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Introduction 

~t In the following we survey the main results in the theory of measure 
and integration. The main references I have used are [EG], [S] and [R], 
in that order. 

o Proofs are usually only sketched, but I have attempted to provide a 
reasonable amount of motivation of both proofs and results. 

e We will often consider geneml measures fl on an arbitrary set X. But 
you should first think of the most important case - Lebesgue measure 
inlRn. Tofixideas, taken=2. 

• There are a considerable number of footnotes. I have done this so as 
not to distract from the main ideas. I suggest you avoid the footnotes 
on first reading and when reviewing the material 
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1 Lebesgue and Other Measures 

1.1 Motivation 

1. Lebesgue measure 1 is a way of assigning to arbitrary subsets of lRn a 
number which corresponds to the "size" of the set. Think of an infinite 
mass uniformly distributed over lRn such that the mass in any unit 
n-cube is one; the Lebesgue measure £(A) of a set A is the "amount 
of matter in A". In particular, 0 :::; £(A) :::; oo. 

Lebesgue measure is the most important example of a measure; you 
should usually think of this case in the general theory which follows. 

2. Radon measures form a very important class of measures. Lebesgue 
measure is a Radon measure. A Radon measure ;.t corresponds to a mass 
distribution in mn' where the amount of matter in any bounded set is 
finite. The measure ;.t(A) of A c JRn is again the "amount of matter 
in A". For example, ;.t may correspond to a units of mass concentrated 
at a point P E IRn. Then ;.t(A) =a if PEA and ;.t(A) = 0 otherwise. 
If ;.t corresponds to (3 units of mass uniformly distributed along a curve 
C of length one, then ;.t(A) = (3 X (length of C in A). 

3. Borel regular measures are the most general measures one usually con
siders in IRn. Examples include the Radon measures. Other examples 
are k-dimensional Hausdorff measure Hk, where 0 :::; k :::; n. 1-{0 is 
"counting measure" and gives the cardinality of a set; 1-{1 is "length"; 
1-{2 is "area", ... , 1-{n is the same as Lebesgue measure in IRn. 2 1-(k is 
always Borel regular, but is not a Radon measure if k < n.3 

1.2 Lebesgue Measure 

1.2.1 Introduction 

If R C IRn is a "rectangle", i.e. 

then we define 
m(R) = (bl- ai) · ... · (bn- an)· 

For general A c IRn the definition of £(A), the Lebesgue measure of A, is 
motivated by the idea of covering A as "efficiently" as possible by rectangles. 

1 What we call a measure is often called an outer measure. 
20ne can also define Hausdorff measure 7-ik for non-integer k. This is useful for 

analysing "Cantor-type" sets. 
3 Why do we expect this? 
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An "efficient"cover 
by rectangles 

Definition If A c !Rn then the Lebesgue measure of A is defined by 

_C(A) =£(A) = inj :L m(Ri), 
AcU,~, Ri 

where the Ri are rectangles.4 

One can show that if R is a rectangle, then 

£(R) = m(R). 

Note that "::;" is immediate; "2:" is basically a combinatorial argument. 

1.2.2 Elementary Properties 

The following properties of £ are used to define the notion of a general 
measure. See Section 1.3.1. 

1. £(0) = 0, 

2. A c U~1 Ai =?£(A)::; 2":::~1 £(A;). 

PROOF: Exercise. 

Exercises 

1. Any singleton, and hence any countable set, has (Lebesgue) measure 
zero. 

2. Any line segment in IR2 has measure zero. 

4 (a) One can consider "closed" rectangles, or half-open rectangles, etc., without chang
ing the value of .C(A). Why? 
(b) Finite covers are allowed; just take R; = 0 for i 2': N, say. 
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Countable Additivity It seems reasonable to expect from our intuitive 
idea of Lebesgue measure that if A = U~1 A; and the A; are mutually disjoint, 
then .C(A) = 2::~1 .C(A;). Unfortunately this is not true, but it is true for the 
so-called (Lebesgue) measurable sets. Essentially any set we come across in 
Analysis is (Lebesgue) measurable, as we will discuss later. See Sections 1.3.2 
and 1.4.3. 

1.2.3 Sets of Measure Zero 

A set is null if it has measure zero. 

We noted in Section 1.2.2 that any countable set is null. The Cantor set 
C is an example of an uncountable null set. 

Co 
c1 

--- - --- --
Approximations to 
the Cantor set 

One constructs C as follows: 

Co = [0, 1] 
c1 = [o, 1/3] u [2/3, 11 

---

c2 [o, 1/9] u [2/9, 1/3] u [2/3, 7 /9] u [8/9, 1] 

00 

Thus C; consists of 2; closed intervals of length 3-i; and C;+l is obtained 
from C; by removing the middle (open) third of each interval inC;. 

By the definition of .C, 

for all i. Hence 
.C(C) = 0. 

The Cantor set C is uncountable 5 since there is a one-one correspondence6 

between elements of C and those reals in [0, 1] which have a ternary expansion 
containing only the numerals 0 and 2. By replacing 2 by 1 and considering 
binary expansions, we obtain a map from the set of such reals onto [0, 1].7 

5C does not consist only of endpoints of the intervals C;. 
6What is it? 
7The map is not one-one, because of the non-uniqueness of the binary expansion of a 

real number. 
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1.3 General Measures 

It is now convenient to generalise our previous considerations. In the follow
ing think of the case X = IR2 . 

1.3.1 Introduction 

The following definition is motivated by the two properties for Lebesgue 
measure noted in Section 1.2.2. 

Definition A measure p, on a set X is a function which assigns to every 
A C X a number p,(A) E [0, oo] such that8 

p,(0) = 0, 

A c U~1 A;=? p,(A) ~ 2:":~1 p,(A;). 

Thus Lebesgue measure is a measure on IRn from Section 1.2.2. 

Definition If A C X then the measure p, restricted to A is the measure 
fll A on X defined by 

plA(B) = p(An B). 

It is straightforward to check that p l A is a measure on X (not on A). If 
we think of p as corresponding to a mass distribution, then p lA is the mass 
distribution obtained by removing any matter outside A.9 

1.3.2 Measurable Sets 

If p is a measure then we define the class of p-measurable sets in such a way 
that p is "countably additive" on this class. The following definition is due 
to Caratheodory. It is not immediately clear where it comes from; it's virtue 
is that it "works" .10 

Definition A set A is (p-)measurable if for any set B, 

p(B) = p(B n A)+ p(B n Ac).n (1) 

8 ( a) It follows that if A C A1 U · · · U AN then p(A) :::; p(A1) + · · · + p(AN ). Just take 
A; = 0 if i > N in the Definition. 
(b) In particular, if A C B then p(A):::; p(B). 

9 0ne could also define a measure PiA on A, rather than X, by JLiA(B) = p(B) for all 
Be A. 

10The idea is that A fails to be measurable if it is so badly intertwined with its comple
ment that ( 1) fails to be true for some B. 

11 (a) Be= X\ B is the complement of B. 
(b) Thus A is measurable iff it splits every set additively. 

7 



Note that "<" is true from the first Definition in Section 1.3.1. 

It is immediate that 

1. 0 and X are measurable, and 

2. any set of measure zero is measurable. 

For a general measure, only X and 0 need be measurable.12 We will see later 
that any set we are likely to encounter in Analysis is Lebesgue measurable, 
c.f. Section 1.4.3. 

The class of {t-measurable sets forms a a-algebra, i.e. is closed under com
plements, countable intersections and countable unions. Moreover, fl has 
precisely the properties on this class that we might expect from our intuition 
about a "measure". 

Proposition Let A and Ab A 2 , •.. be measurable. Then 

2. if A; are disjoint then 

3. if A1 C A 2 C · · · then 

The proof is elementary, but not trivial. 

Exercise If I r is the set of irrationals then I r is Lebesgue measurable and 
£(Ir) = oo. 

(c) If A is not measurable, then (1) will in fact fail with some "nice" set B; e.g. some 
rectangle B in the case of Lebesgue measure. 

12Consider the measure J.t(0) = 0 and J.t(A) = 1 otherwise. 
13This condition is necessary; let Ai = [i, oo). 
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Almost Everwhere If 1-l is a measure on X we say that a property P 
holds almost everywhere if it holds except on a set of (!1- )measure zero. We 
write "P holds 1-l a.e.", or "P holds a.e." if 11 is understood from context. 14 

Sets of measure zero (null sets) can usually be ignored in measure theory. 

1.4 Measures on IRn 

To fix ideas, think of { on lR2 • 

1.4.1 Borel Regular Measures 

Definition A measure f1 on JRn is Borel regular if 

1. every BoreP5 set is 11-measurable, 

2. for every set A there is a Borel set B:) A such that f.L(B) = 11(A).16 

Proposition Lebesgue measure is a Borel regular measu?'e. 

PROOF: One uses Caratheodory's criterion, which says it is sufficient to 
prove .t:(A U B) = .t:(A) + C(B) whenever the distance between A and B is 
> 0. This equality is fairly straightforward to prove. I 

The following is a characterisation of the Lebesgue measurable sets. 

Proposition A set A is Lebesgue measurable {::=:::} A = B \ N for some 
Borel set B and null set N {::=:::} A = BUN for some Borel set B and null 
set N. 

PROOF: Exercise (use the previous Proposition). 

1.4.2 Radon Measures 

Definition A Radon measure is a Borel regular measure such that every 
compact set has finite measure. 

14In probability theory, one says P holds almost surely and writes "P holds a.s.". 
15 Recall that the class of Borel sets ( c.f. Section 1.3.2) is the smallest 0'-algebra con

taining the open sets. In particular, closed sets are Borel. 
16 B is called a Borel cover of A. Thus the set A can be "approximated from above" by 

a Borel set. If the second condition is also true with "::::)'' replaced by "C", then it follows 
A is measurable. Exercise. 
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See Section 1.1 for examples and non-examples. In particular, Lebesgue 
measure is a Radon measure. If a E mn then the Radon measure correspond
ing to a unit mass at a is called the Dirac measure concentrated at a and is 
denoted by Da. Thus 

Da(E) = 1 if a E E, Da(E) = 0 if a rf_ E. 

Remark If p, is a Borel regular measure on mn, A is p,-measurable and 
p,(A) < oo, then p,LA is a Radon measure. This is straightforward to check. 

An example is r£1 measure on JR2 restricted to a curve of finite length. 

1.4.3 Lebesgue Measurable v. Non-Measurable Sets 

The existence of Lebesgue non-measurable sets is proved using the uncount
able axiom of choice. In fact it was proved by Solovay that one actually 
requires the uncountable axiom of choice in the construction. More precisely, 
it is consistent with the usual axioms of set theory, including the countable 
axiom of choice, that all subsets of mn are Lebesgue measurable. 

Moreover, we have seen that the Borel sets are Lebesgue measurable, 
and any sets constructed from the Borel sets by any finite or countable set 
theoretic operation are also Lebesgue measurable. If a set is constructed from 
measurable sets by some sort of limiting operation which is not countable, 
one can often use the density of the rationals to give another "countable" 
construction of the set, and thus deduce its measurability. 

The moral of all this is that you need not worry about non-measurable 
sets, at least when working with Lebesgue measure, or more generally with 
Borel regular measures.17 

1.5 Approximation Results 

Theorem Suppose p, is a Radon measure. Then 

1. for each A c mn 

p,(A) = inf{p,(U): A C U, U open}; 

2. for each p,-measurable A c IRn 

p,(A) = sup{p,(K): K C A, K compact}. 

17In probability theory, and particularly in the theory of stochastic processes, it is 
natural to identify the measurable sets with the class of events which are observable in 
some sense. In this case, non-measurable sets can be quite important. 
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Thus A can be approximated from the outside by open sets and (if it is 
measurable) from the inside by compact setsY 

PROOF: The proof proceeds in steps. 

1. Let 

:F = {A : A is measurable, and for each E > 0 there exists 

a closed set C C A such that M( A \ C) < E} 
(} = {A E :F : A c E F}. 

Then one checks that 

(a) :F contains all closed sets 

(b) :F is closed under countable intersections 

(c) :F is closed under countable unions 

(d) :F contains all open sets 

(e) g is closed under complements and countable unions 

(f) g contains the open sets and hence all Borel sets. 

In particular, each Borel set B contains a closed set C such that 

fl(B\ C)< E 

2. For each Borel B there is an open U =:> B such that fl(U \B) < E (this 
follows by applying the previous result to BN(O) \ B for large N) 19 . 

3. The first claim of the Theorem is next established for Borel sets, and 
hence for arbitrary sets using Borel regularity. 

4. The final result follows from the previous step, essentially by taking 
complements, but there are a few technical points. 

Ill 

18 ( a) One cannot approximate from the inside by open sets; let A be the set of irra
tionals. The only open subset is 0. Similarly, one cannot approximate from the outside 
by compact sets, even if A is bounded; let A be the set of rationals in [0, 1]. 
(b) Measurability is needed in 2 of the Theorem; in fact equality holds iff A is measurable. 
(c) It does not follow that for each c > 0 there is an open set U ~ A such that J.L( U \A) < c. 
But this is true if A is measurable. 
(d) It also follows that if A is measurable then there is a closed C C A such that 
J.L(A \C) < L This is not true for compact C; take A= mn. 

19 BN(O) := {x E !Rn: JxJ < N}. 
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2 Measurable Functions and Integration 

In this Section, f..L is a measure on the set X. 

Think of the case X= IRn, f..l = .C (andY= IR). 

2.1 Measurable Functions 

2.1.1 Introduction 

Essentially any function f : IRn ---+ IR which arises in Analysis will be mea
surable with respect to a given Borel regular measure. Moreover, the class 
of measurable functions is closed under finite and countable operations. 

Definition Let f..l be a measure on a set X, Y be a topological space, and 
f: X ---+ Y. Then f is f..l-measurable if for any open set U C Y, f-1 [U] is 
f..L-measurable. 

It follows (Exercise) that f- 1 [B] is f..L-measurable for any closed set B, 
and more generally for any Borel set B. 

In caseY= IR, f is f..L-measurable iff (Exercise) 

r 1 (-oo,a] := {x: f(x):::; a} is f..L-measurable for all real numbersa. (2) 

Similarly, one can instead consider intervals ofthe form ( -oo, a), or (a, b), 
or (a, b], etc. 

Remark It is often convenient to consider functions f: X ---+ [-oo, +oo]. 
Such a function is said to be measurable if (2) holds and if both of the sets 
{x: f(x) = -oo} and {x: f(x) = +oo} are measurable. 

2.1.2 Elementary Properties 

Proposition Suppose f,g,f1 ,f2, ... : X---+ [-oo,+oo] are real-valued f..L
measurable functions, and a is a real number. Then the following are f..L
measurable:20 21 

af, f + g, fg, f/g, \f\, min{f,g}, max{f,g}, 

infi fi, supi fi, liminfi-+oo fi, limsupi-+oo fi, liiDi-+oo k 
200f course, the relevant expressions must be defined. Thus we need to either define 

oo- oo and 0/0, or to consider only those f and g where this does not happen. We also 
assume that the final limit exists. 

21If (a;)~1 is a sequence ofreal numbers then 

lim inf a; := lim inf a;. 
i-+oo k-+oo i;::::k 
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The proof is routine, using (2). 

2.1.3 Littlewood's Three Principles 

For Lebesgue measure (or more generally, Borel regular measures) one has22 

• Every (measurable) set is nearly open; 

e Every (measurable) function is nearly continuous; 

e Every pointwise convergent sequence of (measurable) functions is nearly 
uniformly convergent. 

We have seen a version ofthe first principle in the Theorem in Section 1.5. 
For the second and third principle see Lusin's Theorem in Section 2.1.4 and 
Egoroff's Theorem in Section 2.1.5 respectively. 

It is frequently the case that if a result is true for open sets, continu
ous functions, or uniform convergence respectively, then some version of the 
corresponding principle enables one to establish the result in general. 

2.1.4 Lusin's Theorem 

Theorem Suppose f1 is a Radon measure on !Rn and f : !Rn --J- IR is !1-
measurable. Then for each E > 0 the1'e is a continuous function g: mn --J- IR 
such that f = g except on a set of 11-measure less than E. 

PROOF: First assume 11(IRn) < oo. 

1. For each integer i find a partition of IRn into measurable sets such that 
f varies by at most 1/ i on each member of the partition. 

2. Approximate members of the partition by disjoint compact subsets to 
within a total 11-measure error c/2i, using the Theorem in Section 1.5. 

3. On these compact sets approximate f by a function f; which is constant 
on each compact set. 

4. The f; converge uniformly on their common domain D to a function g* 

which is continuous on D and agrees with fonD. 

Equivalently, a= liminf;-00 a; iff a is the least extended real number, possibly -oo, for 
which there is a subsequence a;' --+a. Similarly for limsup. Also 

( liminf f;) (x) := liminf f;(x). 
't--+ co z--+ 00 

22 c.f. Littlewood, Lectures on the Theory of Functions, Oxford, 1944, p. 26. 
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5. By Tietze's Extension Theorem, extend g* to a continuous function g 

defined on all of mn. 

The case f..L(lRn) = oo follows by considering f-LlBR and letting R--+ oo. I 

2.1.5 Egoroff's Theorem 

Theorem Suppose f..L is a measure on IRn and J;: IRn --+ 1R are f..L-measurable 
functions. Suppose A c IRn is f..L-measurable, f..L(A) < oo and J; --+ f a.e. 
on A.23 Then for each c > 0 there is a {-L-measurable set B C A such that 
f..L(A \B)< c and f;--+ f uniformly on B. 

PROOF: This is a general result holding for arbitrary measures; and the proof 
is fairly straightforward 

1. First show that for each 8 > 0 and c > 0 there exists an integer N 
and a set As,< C A with f..L(A \As,<)< c such that if(x)- f;(x)l < 8 if 
x E As,< and i ;::: N. 

2. Let B = U~1 Al/i, </2'. 

I 

The condition f..L(A) < oo is necessary. Let J;(x) = x/i for x E JR, A= 1R 
and f..L =C. 

2.2 Integration 

2.2.1 Introduction 

The idea is that iff: IRn--+ [-oo, oo] then J f d.Cn is the signed Cn+l measure 
of the volume under the graph, taking the region below the mn plane with 
a negative sign. 

graph of f 

23That is, /;(x)-+ f(x) for x E A\ N, where p,(N) = 0. 
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However, this approach requires _cn+l measure in order to define inte
gration with respect to _en (and the "product measure" p, x £ 1 to define 
integration with respect to p,). 

Instead, we first define the integral of positive simple functions, then 
of arbitrary positive (measurable) functions, then of arbitrary (measurable) 
functions. 

Definition Suppose p, is a measure on the set X and f: X -+ [ -oo, oo] 1s 
measurable. 

1. If f = :Zf::1 aiXEi 24 where ai ::=: 0 and the Ei are disjoint measurable 
sets25 , then f is said to be a positive simple function and 

2. If f ::=: 0 then 

j f dp, = sup {j u dp, : u ::::; f, u is positive simple} . 

3. For arbitrary measurable f, 

provided it is not the case that both terms on the right are +oo. 

The function f is integrable if J f dp, is well-defined. 27 The function f is 
summable iff f dp, exists and is finite. 28 

If E is p,-measurable, then we define the integral off over E by 

The function f is locally summable if fE If I dp, < oo for all compact E. 29 

30 

24XE is the characteristic function of E and equals one on E and zero otherwise. 
25 We could drop the positivity and disjointedness conditions, but these are the only 

cases we need for the rest of the definition. 
26 \1\There the positive and negative parts off are defined by 

j+ := max{f,O}, r := -min{f,O}. 

27Th us the only way a measurable function can fail to be integrable is if both the positive 
and negative parts have integral equal to oo. 

28Equivalently, J If I dp < oo. Many texts use "integrable" for what we call "summable". 
29Thus the constant function one is locally summable but not summable with respect 

to Lebesgue measure. The function 1/x defined on IRis not even locally summable. 
30See also Section 4.2. 
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Remarks 

1. One can show that the definition is consistent, in that a positive simple 
function has the same integral by any of the three definitions and a 
positive function has the same value by either of the last two definitions. 

2. If f ~ 0 takes the value oo on a set of positive measure, then f f = oo. 

3. If f = g a.e. then f is integrable iff g is irttegrable, and in this case 
f f = f g. In particular, iff = 0 except on a set of measure 0, then 
f f = 0. 

Riemann Integration It is not difficult to show that if f : [a, b] -+ IR 
is lliemann integrable, then the Lebesgue integral f[a,b] f exists and has the 
same value. 

It is interesting to note that the Riemann integral of f is defined by 
partitioning the domain of f into intervals and passing to a limit. On the 
other hand, the Lebesgue integral is essentially defined by dividing the range 
of f into intervals, considering the corresponding pre-image sets in mn' and 
passing to an appropriate limit. 

2.2.2 Elementary Properties 

One has 

1 af ajf (a E JR) 

1f+g = 1 f+ 1 g 

f~g ::::} 1 f~1g 
kJ+lJ kuFf (E and F disjoint). 

More precisely, it is assumed that f and g are integrable, and in the second 
case that the sum on the right is defined. Also E and F are measurable. 

In future, all sets and functions are assumed measurable with respect to 
the relevant measure. All integrals are assumed to be well-defined. 

2.3 Limit Theorems 

2.3.1 Discussion 

Much of the importance of Lebesgue integration is a consequence of the fact 
that under "reasonable" conditions, 

f;-+ f (a.e.) :::::? 1 f;-+ 1 f. (3) 

16 



Note that if such a result is true for "everywhere" convergence, then it is also 
true for "a.e." convergence.31 

The following three examples show the type of behaviour we need to 
avoid and show the necessity of the various hypotheses in the subsequent 
three theorems. Rougly speaking, if we can eliminate the following problems 
then (3) will hold. 

Example 1 Let 

fn(x) 

f(x) 
{ ~ 

0 

0<x::=;1jn 
otherwise 

all x 

Then fn ----+ f everywhere, but J fn d£ = 1 and J f d£ = 0. 

Example 2 Let 

fn(x) 

f(x) 

{ 1 n::=;x::=;n+l 
0 otherwise 
0 all x 

Then fn ----+ f everywhere, but J fn d£ = 1 and J f d£ = 0. 

Example 3 Let 

fn(x) 
f(x) 

-1/n 
0 

all x 

all x 

Then fn I f everywhere, but f fn d£ = -oo and f f d£ = 0. 

2.3.2 Fatou's Lemma 

Theorem Suppose fi :X----+ [-oo, oo] are 11-measurable fori= 1, 2, ... and 
fi 2': g for some 11-summable function g. Then 

J liminf fi df-1 ::=; liminf j fi df-1. 
~---+00 t---+00 

Remark The most commonly used form is 

31 By redefining the f; on a set of measure zero, one obtains covergence everywhere, but 
does not change the value of any of the integrals involved.· 
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Example 3 in Section 2.3.1 shows the need for the bound from below in the 
hypotheses; Example 1 shows that one can only expect "::;" in the conclusion. 

PROOF: By subtracting g from the fi we assume fi ~ 0. 

Let 
f = liminf fi 

'--+00 

(think of the case where limi--+oo fi exists). 

Fix E > 0. Choose 

m 

U = L arXAr ~ 0, Ar disjoint, j U ~ j f- E. 

r=l 

graph of u 

I n 
Ar 

graph of f 

Fix 0 < t < 1 (think oft as near 1). Let 

Br,k = {x EAr: h(x) ~tar Vj ~ k}. 

Then 

Hence for each k, 

J fk > ~LJk 
> ~kr,k jk 

> Ll tar 
r Br,k 

t L arp(Br,k)· 

Letting k -+ oo, 
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Since t can be taken arbitrarily close to 1, 

liminfjfk ?_ ju. 
k->oo 

Since E can be taken arbitrarily close to 0, 

liminf j fk ?_ j f. 
k->oo 

I 

2.3.3 Monotone Convergence Theorem 

Theorem Suppose fi :X~ [-oo, oo] are p-measurable fori= 1, 2, ... and 
fi if a.e. Then 

PROOF: Clearly I fi j, limi fi exists (possibly +oo), and limi fi < I f. 
The reverse inequality follows from Fatou's lemma. I 

Simple Application 

f x"dx = { 
J(o,1] 

_1_ 
a+1 

00 

a> -1 
a::::; -1 

PROOF: Note that x"' is unbounded and so not Riemann Integrable. But if 

{ 
x"' l < x < 1 

fn(x) = 0 0;; X~~ ' 

then 

{ fn={ fn={"~1(1-(~)"'+1) 
J(o,1] J(1/n,1] -log (~) a= -1 

(using standard rules for Riemann integration). 

Since fn j x", the result follows from the monotone convergence theorem. 
I 

Rule of Thumb Integrals like the preceding cause no problems. Just use 
your commonsense in evaluating them. 
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2.3.4 Dominated Convergence Theorem 

Theorem Suppose f;: X --+ [-oo, oo] are p,-measurable fori = 1, 2, ... and 
If; I :::; g for some p,-summable function g. Suppose f;--+ f a.e. Then 

PROOF: From Fatou's lemma, 

1 f:::; liminf 1 f; 
and 1-f:::; lim in£ 1- j;. 

The last inequality implies 

1 f 2:: limsup 1 j;. 
This gives the result. I 
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3 Some Important Theorems 

We consider some of the major results of measure theory. They will be used 
both here and in the other lecture series. 

3.1 Product Measures 

Think of the case f.l = v = £ 1 , X = Y = JR. In this case one can show 
f.l x v = £ 2 on JR2 . 

The diagram in Section 1.2.1 is relevant to the following definition. Note 
that unlike in Section 1.2.1, even if X = Y = IR, the sets Ai and Bi need 
not be intervals. 

Definition Let f.l be a measure on X and v be a measure on Y. Then the 
product measure f.l X v on X X Y is defined by 

(f.lxv)(S) = inf {~ f.l(A;)v(Bi): S C iQ(Ai X Bi), A; and Bi measurable}. 

The following Theorem is not surprising. See [EG] for the (fairly straight
forward, but long) proof. 

Fubini's Theorem Let f.l be a 0'-finite measure32 on X and v be a 0'-finite 
measure on Y. 

1. If A C X and B C Y are measurable, then A X B is measurable and 
(f.l X v)(A X B)= f.l(A) X v(B). 

2. If f.l and v are Radon measures on mm and mn respectively, then f.l X v 
is a Radon measure on mm+n ~ mm X mn. 

3. If S C X X Y is f.l X v measurable then 
Sx := {y: (x, y) E S} is measurable for a. e. x, 
SY := {x: (x, y) E S} is measurable for a. e. y, 
(f.l X v)(S) = J v(Sx)df.l(x) = J f.l(SY)dv(y). 

X X 

32 A measure f.L on X is cr-finite if there exist sets (E;)i,; 1 such that f.L(E;) < oo and 
X = U~1 E;. In particular, any Radon measure on IRn is cr-jinite. 
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4. Iff is p, X v-integrable33 then 
I f(x,y)dv(y) exists for a.e. x and is (measurable and} integrable 
I f(x, y) dp,(x) exists for a. e. y and is (measurable and} integrable, 
IxxY f(x, y) =I (J f(x, y) dy) dx =I (J f(x, y) dx) dy. 

Remark The main point to Fubini's Theorem is that one can evaluate a 
"double" integral by evaluating two "single" integrals. 

The two main hypotheses to verify are (i) the measurability off and (ii) 
the existence of If d(p, X v). The first hypothesis is essentially always true 
in practice, as discusssed in Section 2.1.1. 

The second hypothesis is true iff 2:: 0 a.e. Alternatively, since Fubini's 
Theorem always applies to lfl (being positive, and assuming as usual that 
f is measurable), one can often use Fubini to show that I lfl d(p, X v) < oo. 
But then If d(p, X v) exists (and is finite), and hence Fubini can also be 
applied to f. 

It is possible to find examples where both single integrals in 4 of Fubini's 
Theorem exist, but the double integral does not: 

f = +1/(area of square) on ~ 

f = -1/(area of square) on ~ 

f = 0 otherwise 

ff(x,y) dx = 0, ally 
ff(x,y) dy = 0, all x 
Jff(x,y) does not exist 

r-----~~~~~ 

3.2 Change of Variable Formula 

Definition Suppose ¢>: mn -4 mn is C1 • The Jacobian of¢> at X is defined 
by 

J¢>(x) = absolute value of det[D¢>(x)] 

[ 

811>1 ••• 
8x1 

absolute value of det ; · · . 
81/>n 
8x1 

Geometrically, J ¢>( x) is the "volume expansion factor" for ¢> near x. 
This makes the following result geometrically plausible. 

33Recall that this means the integral exists, possibly equal to ±oo. 
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Theorem Suppose ¢Y: n --+ IRn is one-one and C 1 for some open n c IRn. 
Suppose f:¢Y[f1]--+ IR and f E L1 (¢Y[f1]). Then 

[ f(y)dy = [ f(¢Y(x))J¢Y(x)dx. 
}q,[rJ] lr~ 

In particular, the integral on the right exists and is finite. 

R 

PROOF: See [EG; Section 3.3.3]; the result is a consequence of the "Area 
Formula" .34 The proof is essentially done by first reducing to the case that f 
is a characteristic function and then splitting the domain into sets on which 
¢Y is "almost a polynomial of degree one". If ¢Y is exactly a polynomial of 
degree one, the result is essentially linear algebra. Ill 

The result is easy to remember, just formally replace y by ¢Y( x), so m 
particular dy = J(¢Y(x)) dx. 

3.3 Lebesgue Decomposition Theorem 

Suppose 11 and v are Radon measures on IRn. 

Definition We say 11 is absolutely continuous with respect to v, and write 

{l <Z:: v' 

if v( E) = 0 implies 11( E) = 0 for all E c IRn. 

We say 11 and v are mutually singular and write 

{l j_ v, 

if there exists a Borel set B such that 

Note that two measures are mutually singular if they are "concentrated" 
on disjoint sets. 

We will be most interested in these notions when v =.C. 
34The result in (EG] is more general. The current result follows by replacing f and u in 

(EG] by <P and f o <P respectively. 
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Examples The "point mass" and "curve mass" examples in JR? from Sec
tion 1.1 are mutually singular to C2 and to each other. 

If f: IRn --+ 1R is locally summable (see Section 2.2.1) and f 2: 0 then 
f l C is the Radon measure defined by 

(flC)(E) = k f dC. (4) 

Think of fl C as "Lebesgue measure weighted by the function f". Note that 
flC ~ C, why? 

The next theorem shows that any Radon measure on IRn can be decom
posed into an absolutely continuous part and a singular part with respect to 
Lebesgue measure. The decomposition is essentially unique, the absolutely 
continuous part can be written as in ( 4), and the function f can be found 
"explicitly". 

Theorem Let f1 be a Radon measure on IRn. Then there exist unique 
Radon measures Jlac and Jls such that 

f1 = Jlac + Jls, Jlac ~ C, Jls j_ C. 

Moreover, 

where 
df1 . Jl(Br(x)) 35 -.-(x) = hm for C a. e. x 
d"C r-+0 Wn rn 

(5) 

is called the Radon-Nikodym derivative of f1 with respect to C, and is locally 
summable with respect to C. 

PROOF: The proof is via the Vitali Covering Theorem, which we do not have 
time to present. But see the lectures by Marty Ross. I 

Generalisations There is an analogous result if C is replaced by an arbi
trary Radon measure v. The proof then requires the so-called Besicovitch 
Covering Theorem. 

For more general measures on an arbitrary set, provided the measures are 
O"-:finite,36 an analogous theorem still holds. The major difference is that the 
existence of the Radon Nikodym derivative is obtained by a more abstract 
argument, and the concrete representation in (5) is no longer valid. 

35By definition, Wn = .C(B1 (0)), and so Wnrn = .C(Br(x)) from the scaling and transla
tion properties of Lebesgue measure. 

36See footnote 32. 
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3.4 Lebesgue Points 

Theorem Iff: IRn --+ IR is locally summable then 

lim r f = f(x) 
r-+O!iJr(x) 

(6) 

fora.e.x. 

We say x is a Lebesgue point off if (6) holds. 

Iff = XA is the characteristic function of the (measurable) set A, the 
theorem says that a.e. x E A is a point of density one and a.e. x fl. A is a 
point of density zem. Question: What is the density of A at x where A is a 
square domain in IR2 , for various points x? (Answer: 0, 1/4, 1/2 or 1.) 

PROOF: The theorem is essentially just the Theorem of Section 3.3 applied 
to the measure f l.C. I 

Important Example If A C IRn is measurable then 

lim £(Br(x) n A) = { 1 a.e. X E A 
r-+0 .C( Br (X)) 0 a.e. X f/_ A 

Definition Assume f : IRn --+ IR is locally summable. Then the precise 
representative of f is defined by 

J*( X) = { limr-+0 -fBr(x) f if the l~mit exists 
0 otherwise 

Thus f* = f a.e. Iff is continuous at x, clearly f*(x) = f(x). 

3.5 Riesz Representation Theorem 

If p is a Radon measure on IRn then p induces a positive37 linear map L on 
Cc( IRn) 38 defined by 

L(¢) = j ¢dp. 

Moreover, the converse is true: 

Theorem Assume L : Cc(IRn) --+ IR is linear and positive. Then there 
exists a Radon measure p on IRn such that 

L(¢) = j ¢dp 

37 Positive means that ¢; 2': 0 implies L( ¢;) 2': 0. 
38Cc(IRn) is the set of compactly supported continuous real valued functions defined 

on IRn. 
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PROOF: The idea of the proof is to first define p,(U) for open U by 

p,(U) = sup{L(</>): </> E Cc(/W), spt(</>) C U, 0:::; </>:::; 1}. 

Then define 

p,(E) = inf{p,(U) : E C U, U open}. 

I 

A similar result holds if we drop the positivity requirement: 

Theorem Assume L:Cc(IRn)--> IRis linear and 

sup{L(</>): </> E Cc(IRn), spt(</>) C K, l</>1:::; 1} < oo. 

for each compact K c IRn. Then there exist mutually singular Radon mea
sures p,+ and p,- such that 
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4 Some Function Spaces 

We work with Lebesgue measure in IRn, although many of the results gener
alise. We assume that U C IRn is open. 

4.1 Background Material 

4.1.1 Integration by Parts 

Suppose n is a bounded open subset of IRn with C 1 boundary,39 v 1s the 
outward pointing unit normal and u: n ----+ IRis C 1 (IT).40 Then 

2. fo u Div = - fo v Diu + fao uviv. 

v 

The first result is the Divergence Theorem or Gauss Green Theorem. The 
second follows by replacing u by uv. Note that if u has compact support in 
n, then the boundary terms disappear. 

39 More generally, a finite number of "corners" may be allowed; in fact the boundary 
may be locally the graph of a Lipschitz function. 

4°C1 (D) is defined to be the set of uniformly continuous functions in C(O). Since 0 is 
bounded, this is equivalent to the set of continuous functions on the closure of 0. 

41 Integration over the boundary has not been defined yet. This can be done by inte
grating with respect to Hausdorff measure 1in- 1 restricted to the boundary. Equivalently, 
if the boundary is represented locally as the graph of a function ¢;: u ( c mn- 1 ) ---+ mn 
and f: ¢;[U] ( C 80) ---+ JR, then 

[ f = [ f(cf;(x)) Jcf;(x), 
}q,[u] lu 

The Jacobian J ¢;( x) is here the square root ofthe sum of the squares of the ( n-1) x ( n -1) 
minors of then x ( n-1) matrix D¢;(x ). Compare this with the Change of Variable Formula 
in Section 3.2. Note that in the case of domains in JR2 , J¢;(x) = JV¢;(x)J. 
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4.1.2 Algebraic Inequalities 

Cauchy's Inequality If a, b E IR then 

a2 b2 
ab <-+-- 2 2 

More generally if E > 0 then 

The point in the second inequality is that "one can dominate ab by a 
little bit of a2 at the cost of a lot of b2 ". 

Young's Inequality If a, b > 0, p > 1 and 1lp + 1lp' = 1 then 

aP bP' 
ab< -+-. 

- p p' 

More generally, if also E > 0 then 

ab:::; wP + c(c)bP'. 

In fact, c(c) = (pctp'/Pip'. Note that c(c) I oo as E l 0. 

4.1.3 Integral Inequalities 

Suppose E c 1Rn.42 

Then (Holder's inequality) 

for p, q > 1, 1 I p + 1 I q = 1. 

In particular (Schwartz's inequality) 

Also ( Minkowski 's inequality) 

(fe If+ giP) 1/p :::; (fe IJIP) 1/p + (fe lgiP) lfp. 

42 As usual, all sets and functions are assumed measurable. 
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4.2 LP Spaces 

4.2.1 Definitions 

Recall U C IRn is open (although this is not necessary for much of what 
follows). 

We define43 44 

II!IILP(U) 

ll!li£oocu) 

(fu IJIPdJ1) l/p 1 :::; p < oo, 

ess supulfl. 

If we "identify" fr and / 2 whenever / 1 = h a.e. (more precisely, take equiv
alence classes) and for 1 :::; p :::; oo define 

LP = LP(U) = { f: u --+ IR : II!IILP(U) < 00}' 
then LP(U) is a Banach space with norm II· IILP(U)·45 Moreover, L2 (U) zs a 
Hilbert space46 with inner product (f,g)£2(U) = fu fg. 

We say 
fi --+ f in LP( U) 

if llfi - JIILP(U) --+ 0 as i --+ oo. 

Example Suppose E c IRn is bounded. Then 1/lxl"' E L1(E) iff a < n. 

Hence 1/lxl"' E LP(E) iff a< njp. 

Comparing Different LP Spaces If lUI < oo 47 then (Exercise, using 
Holder's inequality) 

(fu luiP') lfp, :::; (fu luiP2) l/P2 1 :::; Pl :::; P2 < oo, 

where the integral average off is defined by 

It follows that if lUI < oo and 1 :::; p1 :::; P2 :::; oo then 

LP2 (U) c LP'(U). 

43By definition, ess supulfl is the least a such that lfl :=;a a.e. in U. It is easy to show 
that a least such a exists, possible +oo. 

44 Note that fu f := J !xu depends only on the values of f(x) for x E U. Instead of 
extending f to IRn and integrating xu f, we could equivalently integrate the "original" f 
with respect to the measure J.L on U defined by restricting C to subsets of U. Both ways 
are easily checked to be equivalent. 

45 A Banach space is a normed space which is complete. The fact LP(U) is a normed 
space follows from Minkowski's inequality. Completeness means that if (!;)~ 1 is Cauchy 
in the LP norm then !If;- JIILP ---> 0 for some f E LP(U). 

46Recall that a Hilbert space is just a Banach space whose norm is given by an inner 
product. 

47We often write lUI for C(U). 
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Local LP Spaces We say f E Lfoc(U) iff E LP(V) for every open V CC 

U. 48 By "loc" one means "locally". Note that there is no control on f ( x) as 
X----+ au. Trivially, LP(U) c Lfoc(U). 

The local spaces are not normed spaces. We say 

if II!;- JIILP(V) ----+ 0 as i----+ oo for every open V CC U. 

4.2.2 Dual Spaces 

It follows from Holder's inequality that if 1 :::; p :::; oo and 1/p + 1/p' = 1 
then every f E LP' (U) defines a bounded linear operator F on LP(U) given 
by 

F(g) = fu fg. 

Moreover, IIFII = IIJIILP'(U)' where IIFII is the operator norm49 of F. Proof: 
":::;" follows from Holder's inequality and ":=::" follows from choosing g = 
IJIP/P'signg. 

If p of:. oo then all bounded linear operators on LP are obtained in this 
manner. 

Riesz Representation Theorem If 1 :::; p < oo then the above map 
f H- F is an isomorphism from LP' (U) onto the space of bo·unded linear 
operators on LP ( U). 

PROOF: IfF is a bounded linear operator on LP(U) then one can apply the 
second Theorem in Section 3.5 to represent F as a Radon measure p,. One 
then shows p, is absolutely continuous with respect to Lebesgue measure and 
so F = fl£ for some f, c.f. the Radon-Nikodym Theorem in Section 3.3. 
Finally, one uses Holder's inequality to deduce f E LP' (U). ill 

In particular, P is isomorphic to its dual. 

There are bounded linear maps on L00 (U) which do not correspond to 
elements of P(U). To see this, note that distinct f E L 1 (U) induce distinct 
bounded linear maps on C(U) n L00 (U). Since C(U) n L=(U) is a closed 
subspace of L00 (U), the result follows. 

48 V CC U means the closure of Vis a compact subset of U. 
49That is, 

IJFII = sup{JF(g)J: JJgJJMcuJ :<:; 1}. 
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4.2.3 Weak Convergence 

Definition Suppose 1 :S; p < oo. We say (/;)i::.1 C LP(U) converges weakly 
in LP(U) to f E LP(U), and write 

if 

for all g E LP' (U). 

Re1uarks 

1. Since LP' (U) is the dual of LP(U) for 1 :S; p < oo, this is the usual 
notion of weak convergence for Banach spaces. 

2. It is equivalent that (i) llfiiiLP(U) be uniformly bounded, and (ii) f J;g-+ 
J fg for all g in some dense subset S of LP' (U). In particular, if 1 < 
p < oo, one usually takes S to be Cc(U) or CC:(U). 

3. If J; -+ f in the usual (strong) sense (i.e. llfi - JIILP(U)-+ 0), then 
fi ~ f in LP(U), Exercise. But the converse is not true. 

The idea for weak convergence is that fi ~ f if fi converges to f in a 
sort of "average" sense. For example, let 

U = (0, 1), J;(x) = sin(ix), f(x) = 0. 

Then it follows from 2 that fi ~ f, but it is clearly not the case that 
j;-+ fin LP(U). 

An extremely important fact is that under mild restrictions, if 1 < p < 
oo, then a sequence of functions from LP(U) will have a subsequence which 
converges weakly in LP(U). 

Weak Compactness Theorem Suppose 1 < p < oo. Suppose (f;)i::.1 C 
LP(U) and IIJ;IILP(U) :S; M < oo. Then there exists f E LP(U) and a subse
quence J;' such that 

j;, ~ j in LP(U). 

PROOF: Since LP(U) is reflexive50 for 1 < p < oo, this follows from the usual 
compactness Theorem for the weak* topology. II 

50 That is, LP (U) is isomorphic to the dual of its dual. 
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The result is not true for strong convergence, as the example in 3 above 
indicates. Nor is it true if p = 1, as we see by taking 

U = ( _ 1, 1), J;( x) = { ix 0 :::; x ~ 1/ i 
0 otherwise. 

(In fact, this sequence converges "weakly in the sense of measures" to the 
Dirac measure 80 .) 

4.3 Approximations by Smooth Functions 

Define 

4.3.1 Mollifiers 

U, = {x E U: d(x,fJU) 51 > c}. 

u 

Fix a coo function 'f/: IRn ----Jo IR such that 

1. 'f/ :::: 0, 

2. ry(x) = 0 if JxJ ::=:: 1, 

3. f ry(x) dx = 1. 

51 The distance from the point x to the set E is defined by 

d(x,E) = inf{d(x,y): y E E}. 
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Let 

Note that 

j 1], = 1, and TJ,(x) = 0 if !xl2 E. 

The function 1], is called a mollifier. 

For f E Lfoc(U) the f.-approximation to f is defined for x E U, by 

f,(x) = j TJ,(x- y)f(y) dy = j TJ<(y)f(x- y) dy. 52 (7) 

We interpret f,(x) as a weighted average (via TJ,) of the values f(y) for y 
near x. 

Suppose f is uniformly continuous on U. Then f extends continuously 
to JRn by the Tietze Extension Theorem. We often write f< for the f.

approximation to some such extension of f. For x E U \ U, the value of 
f, ( x) will depend on the particular extension. 

Suppose f E LP(U). Then the zero extension of f to mn belongs to 
LP ( mn). using this extension we define f, (X) for all X E u. 

4.3.2 Approximation Results 

Theorem Suppose U C IRn is open and f E Lfoc(U). Then 

2. Iff E C(U) then SUPu, lf,l ::; supu lfl and f, --+ f uniformly on com
pact subsets of U. 

52 The second equality follows from the change of variable formula. 
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3. Iff E Lfoc(U) for 1 :::; p < oo then llf,IILP(U,) :::; llfiiLP(U) and f, -+ f 
in Lfoc(U). 

4. Iff E C(U) is uniformly continuous, then f,-+ f uniformly in U. 

5. Iff E LP(U) for 1:::; p < oo then f,-+ fin LP(U). 

PROOF: It follows formally by differentiating the first expression for f, in (7) 
that 

~~: = J a~/]c(X- y) f(y) dy. 

This is justified rigorously by taking difference quotients and using the dom
inated convergence theorem. 

One proceeds similarly for higher order derivatives. 

The inequality in 2 is easy. To prove uniform convergence, we have by 
the change of variable formula 

f,(x) = f 7!(Y)f(x- Ey) dy. 
j B1 (D) 

Then 2 and 4 follow, since 

f,(x)- f(x) = f 77(y) (f(x- cy)- f(x)) dy. 
}B, (0) 

The inequality in 3 can be established from Holder's inequality, Exercise. 

For the remainder of 3 we use the fact that for each 8 > 0 and open 
V CC U, there exists a continuous g such that llg- fiiLP(V) < 8.53 It follows 
from the inequality in 3 that for E sufficiently small 

Using 2, select E so 

Then 3 follows, and 5 is similar. 

Remark Results 3 and 5 are not true if p = oo. A uniform limit of 
continuous functions is continuous. In particular, if f(x) = 0 for x < 0 and 
f(x) = 1 for x ;:=:: 0, then f is not a limit in the L00 norm of continuous 
functions. 

53This density result for continuous functions can be established, for example, using 
Lusin's theorem. Of course it is a weaker case of the result of the present theorem. 

34 



4.4 Weak Derivatives 

4.4.1 Motivation 

In the study of Partial Differential Equations (PDE's ), and in the Finite 
Element Method in Numerical Analysis, to name just two situations, it is 
necessary to consider functions whose derivatives exist in the so-called weak 

sense. Such functions are called Sobolev functions. 

For example, it is often fairly easy to show that a (linear or quasilinear) 
PDE has a Sobolev function as a solution in a certain ("weak") sense. One 
then attempts to show that such a solution is in fact smooth and is moreover 
a solution in the classical sense. This can be quite difficult, and will be 
considered in detail in John Urbas's lectures. 

In the finite element method it is necessary to work with continuous and 
piecewise linear functions. Such functions do not have classical derivatives 
everywhere, but they are Sobolev functions; see Steve Robert's lecture. 

Suppose f E C 1 (U), where U c IRn is open. Then for all¢ E C~(U) 

j Dd ¢ = - j f Di¢, i = 1, ... , n. 

Moreover, this uniquely determines Dd in the sense that if 

fg¢ =- j f Di¢ 

for all ¢ E C~(U), then g = Dd a.e. Exercise. 

4.4.2 Introduction 

Motivated by the previous considerations, one makes the following definition. 

Definition Suppose f E Lfoc(U) and 1 :::; i :::; n. Then gi E Lloc(U) is said 
to be the ith weak partial derivative of f in U if 

for all¢ E C~(U). 

The function g; is unique (a.e.) 54 and is written Dd or%!,. We also write 
Df = (Dd, ... ,Dnf). 

Example 1 Iff E C1(U) then gi is the usual (classical) derivative of f. 
54That is, any two such functions g agree a.e., Exercise. 
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Example 2 Suppose 

f(x)=lxl-

Then the weak derivative exists and is given by 

Df(x)={-1 x:::;o 
1 X> 0 

(8) 

To see this, let g be defined by the right side of (8). Then using integration 
by parts (c.£. Section 4.1.1) we obtain 

- jo X Dic/J + roo X Dic/J 
-oo Jo 

j o Dix cp - r= Dix ¢ 
-oo Jo 
-J g¢. 

Thus g is indeed the weak derivative. 55 Note in the previous calculation that 
the boundary terms obtained in passing from the first line to the second line 
were both zero {more typically, boundary terms will cancel one another). 

Example 3 Suppose 

f(x) = { -1 x:::; 0 
1 X> 0 

Then the classical derivative exists for all x except x = 0, but the weak 
derivative does not exist in the sense of the previous definition. We remark 
that the weak derivative does exist in the distributional sense (which is an 
extension of the present notion of weak derivative), see the lectures by Tony 
Dooley. 

To see this, computing as in the previous example, 

- jo Dic/J + r= Dic/J 
-= lo 

-2cp(O). 

Note that if 80 is the Dirac measure at zero (see Section 1.4.2), then it is easy 
to check that 

j ¢d80 = ¢(0) 

for all cp E Cc(U). Thus we can naturally identify the weak derivative of f 
with 28o, but not with any Lfoc function. 

550f course, we could have taken g(O) = 1, or even have changed g on any set of measure 
zero. 

36 



Example 4 Suppose f is continuous, and C 1 on the interior of each trian
gle, in a triangulated domain as shown below. 

Then it is straightforward to check that the two weak derivatives exist, 
and equal the classical derivatives on the interior of each triangle. The main 
point is that in performing the integration by parts as in Example 2, one ob
tains boundary terms which cancel in pairs corresponding to pairs of adjacent 
triangles. 

4.4.3 W 1 ·P Spaces 

Definition Let 1 ~ p ~ oo. The corresponding Sobolev Space and local 
Sobolev Space are defined by 

W 1·P(U) 
w,l,p(U) 

loc 

{f E LP(U): Dd E LP(U), i = 1, ... ,n}, 

{f E Lfoc(U) : Dd E Lfoc(U), i = 1, ... , n}, 

where the Dd is the weak derivatives. The W 1 ·P norm is defined by 

( 
n ) 1/p fu ifiP + ~ iDJiP 1 ~ p < oo, 

llfllw1 •00 (U) ess supu (if! + ~ !Dd!) · 

Remark W 1·P(U) together with the norm II· 11w'.P(U) is a Banach space. 
Proof: The main point is that W 1·P(U) is a closed subspace of then+ 1-fold 
product Banach space LP(U) X · · · X LP(U). 

We write 

if !If; - fiiw'·P(U) ----+ 0, and 

if !If; - fiiw'·P(V) ----+ 0 for each open V CC U. 
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Theorem If the weak derivatives D;J off exist, then 

D;(f,) = (D;J),. 

Moreover, iff E W'i~:(U) for some 1 :::; p < oo, then 

PROOF: One computes 

D;(f,) j ~:: (x- y)f(y) dy 

- j 071' (x- y)f(y) dy 
oy; 

J of 
ry,(x- y) oy; (y) dy 

= (D;J),. 

The convergence follows from the Theorem in Section 4.3.2. 

For further important properties of Sobolev Spaces see [EG]. 

References 

I 

[EG] L. Evans & R. Gariepy, Measure Theory and Fine Properties of Func
tions, CRC Press 1992. 

[R] H.L. Royden, Real Analysis, Macmillan 2nd ed. 1968, 3rd ed. 1988. 

[S] K.T. Smith, Primer of Modern Analysis, Bogden & Quigley 1971, 
Springer. 

38 


